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A General Theorem on an Optimum Stepped
Impedance Transformer*
HENRY J. RIBLET}

Summary—With the assistance of a mathematical theorem dem-
onstrated by Eaton in a companion paper, it is shown rigorously, in
the limit of small impedance transformation, that the familiar bi-
nomial impedance transformer, consisting of equal quarter-wave
steps, is the shortest, monotonic, maximally-flat, stepped, transmis-
sion-line transformer having steps commensurate in length with the
midband guide-wavelength, and coincident zeros at the midband
frequency.

It is shown how this theorem places very severe limitations on
any effort to improve on the performance of a quarter-wave trans-
former by increasing the number of its impedance steps without a
corresponding increase in its length.

INTRODUCTION

SOLYMAR! has, in a recent paper, considered
L the problem of the optimum design of mono-

° tonic, stepped, transmission-line transformers.
He has made the simplifying assumption that multiple
reflections from the impedance discontinuities can be
neglected, and has introduced the requirement of mono-
tonicity to avoid the problem of “supermatch” which
can otherwise appear, even when multiple reflections
are considered. He employs the even polynomials pro-
posed by Riblet,? to construct examples which show the
interesting fact that, for given relative bandwidth, the
quarter-wave transformer does not give the smallest
pass-band reflection coefficient if additional length is
available. He observes that, with transformers less than
one-eighth wavelength long, this procedure resultsiin
nonmonotonic solutions.

Solymar’s problem involves the length of the trans-
former, its bandwidth, and the ratio of tolerable reflec-
tion coefficient in the pass band to the reflection co-
efficient to be transformed. Any general discussion of
the optimum design is exceedingly involved, and the
results will certainly depend on the constraints placed
on these three variables.

Several years ago, the writer considered the same
general problem and was forced by its analytical dif-
ficulty to limit his investigation to the maximally-flat
transformer. This restriction, however, permits a major
simplification in the statement of the problem, since the

* Manuscript received by the PGMTT, July 23, 1959; revised
manuscript received, October 19, 1959. The problem and proof were
presented before the URSI meeting, Washington, D. C., May, 1933.
The discussion of Solymar’s paper has been added as a result of the
renewed interest in the problem.
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variables of bandwidth and tolerable reflection coef-
ficient may then be simultaneously specified, while the
number of coincident zeros at the “resonant” frequency
precisely determines the length of the transformer.
Even for an impedance transformer of finite band-
width, of course, its tolerable VSWR is closely related
to the number of zeros occurring in the operating band.
Consideration of Solymar’s examples will show that the
number of zeros in the band of his “optimum” trans-
formers does not exceed the number available from the
longest quarter-wave transformer which can be fitted
into the available length. When he improves on the per-
formance that a quarter-wave transformer will yield, it
is the spacing of the zeros which is adjusted. His efforts
to introduce additional zeros leads to nonmonotonic
solutions. In fact, it may be conjectured, in general, that
additional zeros in the operating band of the impedance
transformer will result in a nonmonotonic design.

THE PROBLEM

Consider the stepped, transmission-line transformer
shown schematically in Fig. 1, operating between input
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Fig. 1—Schematic of n-section transformer.

and output impedances Z, and Z.y1, respectively. T'; is
the reflection coefficient at the ¢th step. For a monotonic
transformer all of the I', have the same sign. The input
reflection coefficient p neglecting multiple reflections,
is known to be

p=T14+ Tox + Tax? 4 -+ - 4 Thpa?,

where x =exp { Aml/Ng } .

If we require that p have » zeros at the particular
frequency, where A\, =},, we immediately find a solution
of the problem in the form

p=Cl+ 1 L

if we select I=2X,/4, since then x=exp {irX,/A,} which
equals —1 at the particular frequency. This is, of course,
the familiar binomial, maximally-flat, transformer con-
sisting of #, equal-length quarter-wave sections in which
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the T',’s have the ratios of the binomial coefficients. For
engineering purposes, (1) may be rewritten as

,’ Pr = P{COS (77‘0/2)\11)}”: 2

where T' is the reflection coefficient to be matched by
the transformer. Eq. (2) defines, in terms of #, the band-
width over which a given (p[ /T will not be exceeded.

It is the object of this paper to indicate how the bi-
nomial, quarter-wave transformer is optimum in the
sense that no shorter stepped, monotonic transformer
can have additional zeros at the chosen frequency. For
this purpose, consider a transformer consisting of sec-
tions each X\,/4r in length, where 7 is an integer. If a
shorter, monotonic transformer could be designed using
sections of this length, still having 7 coincident zeros,
it would mean that a polynomial of degree less than n#
in x=exp {4mA,/7\,} could be constructed having posi-
tive real coefficients, with # coincident roots for Ay =1},.
The condition on the degree follows from the fact that
the over-all length of an impedance transformer is equal
to the degree of the polynomial representing the input
reflection coefficient multiplied by the length of the in-
dividual transformer sections. That this is impossible
follows immediately from the purely mathematical
theorem.?

Theorem: The real polynomial of minimum degree
with positive coefficients having # roots at e is
(xm41)m.

Moreover since the solution p=C(x"+1)" for the
shorter steps is identical to (1) for the quarter-wave
steps, we see that our efforts to improve on the quarter-
wave transformer have brought us back to the starting
point. We can thus prove the following theorem on an
optimum impedance transformer.

Theorem A: The shortest, monotonic, stepped im-
pedance transformer, all of whose steps are commensur-
ate in length with A having # coincident zeros for
A, =X, is the binomial, quarter-wave transformer having
n steps.

Proof: The requirement that the steps be commensur-
ate with N, permits the selection of an 7 sufficiently large
so that any shorter transformer meeting the conditions
of the theorem can be thought to consist of steps each
N\,/4r in length. The theorem proved by Eaton is then
applicable and a contradiction results.

3 This theorem was conjectured by the writer, but its truth was
in doubt for over a year before the ingenious proof given in the com-
panion paper was found by J. E. Eaton. During that year, a careful
search of the literature and inquiry of experts in the related branch
of analysis failed to reveal any previous interest in this type of
problem.
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ENGINEERING APPLICATIONS

This theorem cannot restrict the performance of prac-
tical transformers without additional arguments in-
volving “continuity” and “limits” since there is no way
of determining when the conditions requiring commen-
surate lengths and coincident zeros have been met.* Ac-
cordingly its rigorous application is limited to purely
theoretical design procedures. For example, it may be
applied to the problem of Solymar, as follows.

Theorem B: No design procedure, which is independ-
ent of bandwidth, can yield a monotonic, stepped, im-
pedance transformer having % zeros in its pass band,
consisting of a fixed number of sections of fixed length,
each commensurate with A, which is shorter in over-all
length than #\,/4.

Proof: The existence of such a design procedure would
imply the existence of an infinite sequence of poly-
nomials of fixed degree having the property that # of
their roots approach some limiting value ¢'”. The co-
efficients of these polynomials each then constitute a
finite number of infinite sequences of bounded, positive
real numbers. By a fundamental theorem, these se-
quences have limit points which are non-negative and
bounded, and, thus, define a positive, real polynomial
with # coincident zeros. This polynomial must at least
be of degree nr, and so the design procedure cannot
vield transformers shorter than #d,/4.

CoNCLUSION

Two theorems are demonstrated showing that the
quarter-wave transformer is optimum under certain
idealized conditions. Although these conditions are im-
plicit in present design procedures, a deficiency exists in
the theory which has the result that it is not applicable
to an actual transformer. This limitation is not essential
to the theory, however, and one may hope that it will
be removed ultimately.

In the meantime the theorems give mathematical
reality to the demarcation between monotonic design
and “supermatch” and will serve as beacons pointing
to certain obstacles which will have to be faced in any
effort to put more zeros in the pass band of a monotonic
transformer than are contained in the quarter-wave
transformer of optimum design.

4 Although some progress has been made in this direction, the
problem is complicated by its delicate algebraic nature. For example,
a quarter-wave transformer when imagined to consist of shorter
length steps is certainly on the verge of nonmonotonicity.




