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A General Theorem on an Optimum Stepped

Impedance Transformer*

HENRY J. RIBLET~

Surmnar~-With the assistance of a mathematical theorem dem-

onstrated by Eaton in a companion paper, it is shown rigorously, in

the liiit of small impedance transformation, that the familiar bi-

nomial impedance transformer, consisting of equal quarter-wave

steps, is the shortest, monotonic, maximally-flat, stepped, transmis-

sion-line transformer having steps commensurate in length with the

midband guide-wavelength, and coincident zeros at the midband

frequency.

It is shown how thk theorem places very severe lhnitations on

any effort to improve on the performance of a quarter-wave trans-

former by increasing the number of its impedance steps without a

corresponding increase in its length.

INTRODUCTION

L
SOLYMAR1 has, in a recent paper, considered

the problem of the optimum design of mono-

“ tonic, stepped, transmission-line transformers.

He has made the simplifying assumption that multiple

reflections from the impedance discontinuities can be

neglected, and has introduced the requirement of mono-

tonicity to avoid the problem of “supermatch” which

can otherwise appear, even when multiple reflections

are considered. He employs the even polynomials pro-

posed by Riblet,z to construct examples which show the

interesting fact that, for given relative bandwidth, the

quarter-wave transformer does not give the smallest

pass-band reflection coefficient if additional length is

available. He observes that, with transformers less than

one-eighth wavelength long, this procedure results~in

nonmonotonic solutions.

Solymar’s problem involves the length of the trans-

former, its bandwidth, and the ratio of tolerable reflec-

tion coefficient in the pass band to the reflection co-

efficient to be transformed. Any general discussion of

the optimum design is exceedingly involved, and the

results will certainly depend on the constraints placed

on these three variables.

Several years ago, the writer considered the same

general problem and was forced by its analytical dif-

ficulty to limit his investigation to the maximally-flat

transformer. This restriction, however, permits a major

simplification in the statement of the problem, since the

* Manuscript received by the PGMTT, July 23, 1959; revised
manuscript received, October 19, 1959. The problem and proof were
presented before the URSI meeting, Washington, D. C., May, 1953.
The discussion of Solymar’s paper has been added as a result of the
renewed interest in the problem.

t N!ficrowave Development Labs., Inc., Wellesley, Mass.
‘ L. Solymar, “Some notes on the optimum design of stepped

transmission-line transformers, ” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-6, pp. 374-378; October, 1958.

z H. J. Rlblet, “Discussion on ‘A current distribution for broad-
side arrays which optimizes the relationships between beamwidth
and side-lobe level’, ” PROC. IRE, vol. 35, pp. 489-492; May, 1947.

variables of bandwidth and tolerable reflection coef-

ficient may then be simultaneously specil~ed, while the

number of coincident zeros at the ~6resonant” frequency

precisely determines the length of the transformer.

Even for an impedance transformer of finite band-

width, of course, its tolerable VSWR is closely related

to the number of zeros occurring in the operating band.

Consideration of Solymar’s examples will show that. the

number of zeros in the band of his ‘(optimum” trans-

formers does not exceed the number available from the

longest quarter-wave transformer which can be fitted

into the available length. When he improves on the per-

formance that a quarter-wave transformer will yield, it

is the spacing of the zeros which is adjusted. His efforts

to introduce additional zeros leads to non monotonic

solutions. In fact, it may be conjectured, in general, that

additional zeros in the operating band of the impedance

transformer will result in a nonmonotonic design.

THE PROBLEM

Consider the stepped, transmission-line transformer

shown schematically in Fig. 1, operating between input
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Fig. l—Schematic of n-section transformer.

and output impedances ZO and Zn+l, respectively. I_i is

the reflection coefficient at the ith step. For a~monotonic

transformer all of the I’, have the same sign, The input

reflection coefficient p neglecting multiple reflections,

is known to be

where x = exp { i4~l/A, }.

If we require that p have n zeros at. the particular

frequency, where A~ = X,, we immediately find a solution

of the problem in the form

p = C($5 + 1)”, (1)

if we select 1= X~/4, since then x = exp { hrX~/& } which

equals – 1 at the particular frequency. This is, of course,

the familiar binomial, maximally-flat, transformer con-

sisting of n, equal-length quarter-wave sections in which
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the I’,’s have the ratios of the binomial coefficients. For

engineering purposes, (1) may be rewritten as

I P] = r{ Cos (7rx,/&) } ‘, (2)

where r is the reflection coefficient to be matched by

the transformer. Eq. (2) defines, in terms of n, the band-

width over which a given I p I /r will not be exceeded.

It is the object of this paper to indicate how the bi-

nomial, quarter-wave transformer is optimum in the

sense that no shorter stepped, monotonic transformer

can have additional zeros at the chosen frequency. For

this purpose, consider a transformer consisting of sec-

tions each Xg/4r in length, where Y is an integer. If a

shorter, monotonic transformer could be designed using

sections of this length, still having n coincident zeros,

it would mean that a polynomial of degree less than n?

in x = exp { irXu,/r& } could be constructed having posi-

tive real coefficients, with n coincident roots for & = Jo.

The condition on the degree follows from the fact that

the over-all length of an impedance transformer is equal

to the degree of the polynomial representing the input

reflection coefficient multiplied by the length of the in-

dividual transformer sections. That this is impossible

follows immediately from the purely mathematical

theore m.3

Theorem: The real polynomial of minimum degree

with positive coefficients having n roots at e;wl’ is

(X’+1)”.

Moreover since the solution p = C(x’ + 1)’ for the

shorter steps is identical to (1) for the quarter-wave

steps, we see that our efforts to improve on the quarter-

wave transformer have brought us back to the starting

point. We can thus prove the following theorem on an

optimum impedance transformer.

Theorem .4: The shortest, monotonic, stepped im-

pedance transformer, all of whose steps are commensur-

ate in length with X having n coincident zeros for

& = X,, is the binomial, quarter-wave transformer having

n steps.

Proof: The requirement that the steps be commensur-

ate with ~~ permits the selection of an Y sufficiently large

so that any shorter transformer meeting the conditions

of the theorem can be thought to consist of steps each

X@/4r in length. The theorem proved by Eaton is then

applicable and a contradiction results.

8 This theorem was conjectured by the writer, but its truth was
in doubt for over a year before the ingenious proof given in the com-
panion paper was found by J. E. Eaton. During that year, a careful
search of the literature and inquiry of experts in the related branch
of analysis failed to reveal any pre~,ious interest in this type of
problem.

ENGINEERING APPLICATIONS

This theorem cannot restrict the performance of prac-

tical transformers without additional arguments in-

volving “continuity” and ‘{limits” since there is no way

of determining when the conditions requiring commen-

surate lengths and coincident zeros have been met.4 Ac-

cordingly its rigorous application is limited to purely

theoretical design procedures. For example, it may be

applied to the problem of Solymar, as follows.

Theorem B: No design procedure, which is independ-

ent of bandwidth, can yield a monotonic, stepped, im-

pedance transformer having n zeros in its pass band,

consisting of a fixed number of sections of fixed length,

each commensurate with i~, which is shorter in over-all

length than nh,/4.

Proof: The existence of such a design procedure would

imply the existence of an infinite sequence of poly-

nomials of fixed degree having the property that n of

their roots approach some limiting value e;”/r. The co-

efficients of these polynomials each then constitute a

finite number of infinite sequences of bounded, positive

real numbers. By a fundamental theorem, these se-

quences have limit points which are non-negative and

bounded, and, thus, define a positive, real polynomial

with n coincident zeros. This polynomial must at least

be of degree nY, and so the design procedure cannot

yield transformers shorter than nXg/4.

CONCLUSION

Two theorems are demonstrated showing that the

quarter-wave transformer is optimum under certain

idealized conditions. Although these conditions are im-

plicit in present design procedures, a deficiency exists in

the theory which has the result that it is not applicable

to an actual transformer. This limitation is not essential

to the theory, however, and one may hope that it will

be removed ultimately.

In the meantime the theorems give mathematical

reality to the demarcation between monotonic design

and ‘(supermatch” and will serve as beacons pointing

to certain obstacles which will have to be faced in any

effort to put more zeros in the pass band of a monotonic

transformer than are contained in the quarter-wave

transformer of optimum design.

4 Although some progress has been made in this direction, the
problem is complicated by its delicat: algebraic nature. For example,
a quarter-w?ve transformer when Imagined to consist of shorter
length steps 1s certainly on the verge of nonrnonotonicity.


